How the Brain Filters Out Sounds

Summary: A new study sheds light on auditory perception in bats.

Source: Goethe University

Bats are renowned for their echolocation skills, navigation using sound therefore: they ‘see’ with their extremely sensitive hearing, by emitting ultrasonic calls and forming a picture of their immediate environment on the basis of the reflected sound. Thus, for instance, Seba’s short-tailed bat (Carollia perspicillata) finds the fruit it prefers to eat using this echolocation system.

At the same time bats use their voice to communicate with other bats, whereby they then utilise a somewhat lower frequency range. Seba’s short-tailed bat has a vocal range which is otherwise only found among songbirds and humans. Just like humans it creates sound via its larynx.

In order to find out how Seba’s short-tailed bat filters out particularly important signals from the wide diversity of different sounds – warning cries from other bats, the isolation calls of infant bats, as well as the reflections from pepper plants in the labyrinth of leaves and branches, for example – researchers at Goethe University Frankfurt recorded the brain waves of the bats.

To this end the researchers headed by Professor Manfred Kössl from the Institute of Cell Biology and Neuroscience inserted electrodes – as fine as acupuncture needles – under the scalp of the bats while the bats drowsed under anaesthetic. Ultimately this measuring method is so sensitive that even the slightest movement of a bat’s head would interfere with the results of the measurements. Despite being anaesthetised, the bat’s brain still reacts to sound.

Successions of two notes with differing pitches, corresponding to either echolocation calls or communication calls, were then played back to the bats. Initially a sequence was played back in which note 1 occurs much more frequently than note 2, for example “1-1-1-1-2-1-1-1-2-1-1-1-1-1-1…”. This was reversed in the next sequence, with note 1 occurring rarely and note 2 frequently. In this manner the scientists wanted to establish whether the neuronal processing of a given sound depended on the probability of it occurring and not, for instance, on its pitch.

Ph.D. student Johannes Wetekam, lead author of the study, explains: “Indeed our research results show that a rare and thus unexpected sound leads to a stronger neuronal response than a frequent sound.” In this respect the bat’s brain regulates the strength of the neuronal response to frequent echolocation calls by downplaying these, and amplifies the response to infrequent communication calls. Wetekam: “This shows that the bats process unexpected sounds differently in dependence on their frequency in order to gather adequate sensory impressions.”

The interesting aspect here, says Wetekam, is that the processing of the signals seemingly already occurs in the brain stem, which it has been assumed to date merely receives acoustic signals and transmits them to higher regions of the brain, where the signals are then offset against one another. The reason: “This probably saves the brain as a whole a lot of energy and allows for a very fast reaction,” says Wetekam.

Professor Manfred Kössl believes: “We are all familiar with the party effect: we filter out the conversations of people in our immediate environment so we can concentrate totally on the person we are speaking with. These mechanisms are similar to those found in bats. If we can better understand how bats hear sound, in the future this could help us to understand what occurs with disorders such as ADHD (attention deficit hyperactivity disorder), which disrupt adequate processing of extraneous stimuli.”

Correlates of deviance detection in auditory brainstem responses of bats

Identifying unexpected acoustic inputs, which allows to react appropriately to new situations, is of major importance for animals. Neural deviance detection describes a change of neural response strength to a stimulus solely caused by the stimulus’ probability of occurrence.

In the present study, we searched for correlates of deviance detection in auditory brainstem responses obtained in anaesthetised bats (Carollia perspicillata). In an oddball paradigm, we used two pure tone stimuli that represented the main frequencies used by the animal during echolocation (60 kHz) and communication (20 kHz).

For both stimuli, we could demonstrate significant differences of response strength between deviant and standard response in slow and fast components of the auditory brainstem response. The data suggest the presence of correlates of deviance detection in brain stations below the inferior colliculus (IC), at the level of the cochlea nucleus and lateral lemniscus.

Additionally, our results suggest that deviance detection is mainly driven by repetition suppression in the echolocation frequency band, while in the communication band, a deviant-related enhancement of the response plays a more important role. This finding suggests a contextual dependence of the mechanisms underlying subcortical deviance detection.

The present study demonstrates the value of auditory brainstem responses for studying deviance detection and suggests that auditory specialists, such as bats, use different frequency-specific strategies to ensure an appropriate sensation of unexpected sounds.

About this auditory neuroscience research news

Author: Markus Bernards
Source: Goethe University
Contact: Markus Bernards – Goethe University
Image: The image is credited to Julio Hechavarria / Goethe University Frankfurt, Germany

Original Research: Open access.
“Correlates of deviance detection in auditory brainstem responses of bats” by Manfred Kössl et al. European Journal of Neuroscience

en_GB